Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Indian J Pathol Microbiol ; 66(1): 19-23, 2023.
Article in English | MEDLINE | ID: covidwho-2234303

ABSTRACT

Context: Researchers throughout the world devote enormous efforts to reveal the peculiarities of the pathogenesis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, however, it continues to surprise and cause the death of millions of people. Aims: This article aims to study the molecular mechanisms provoked by SARS-CoV-2, the virus-induced changes in Angiotensin-converting enzyme 2 (ACE2) functionality, in the vascular homeostasis through CD34 expression, B-cell immunity through the expression of CD20 and CD79α, and adhesion molecules through E-cadherin. Settings and Design: This was a prospective, descriptive, and observational study. Methods and Material: A total of 15 autopsies of patients deceased by COVID-19 infection, confirmed by PCR, were performed. The lungs of all patients were examined histologically and immunohistochemically for ACE2, E-cadherin, CD34, CD20, and CD79α. Results: Immunohistological analysis showed increased ACE2 expression in all lung autopsy material affected by COVID-19 infection and we found a higher intensity of ACE2 expression than that of a healthy lung. CD20 examination reveals total deficiency of B-cells in the pulmonary parenchyma and CD79α is also absent. E-Cadherin is not expressed in the basal cellular sections where the contact elements are missing. CD34 demonstrates a desquamation of the endothelial cells, which indicates a direct damage of the vascular walls. Conclusions: We found that patients who died after severe COVID-19 had high immune deficiency and impaired intercellular communication in the parenchyma and endothelium of lung tissue, leading to severe thromboembolic complications in patients with multiple diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Autopsy , Cadherins/metabolism , COVID-19/pathology , Endothelial Cells , Lung/pathology , Prospective Studies
2.
Oxid Med Cell Longev ; 2022: 1030238, 2022.
Article in English | MEDLINE | ID: covidwho-2194204

ABSTRACT

The effective remission of acute respiratory distress syndrome- (ARDS-) caused pulmonary fibrosis determines the recovery of lung function. Inositol can relieve lung injuries induced by ARDS. However, the mechanism of myo-inositol in the development of ARDS is unclear, which limits its use in the clinic. We explored the role and mechanism of myo-inositol in the development of ARDS by using an in vitro lipopolysaccharide- (LPS-) established alveolar epithelial cell inflammation model and an in vivo ARDS mouse model. Our results showed that inositol can alleviate the progression of pulmonary fibrosis. More significantly, we found that inositol can induce autophagy to inhibit the progression pulmonary fibrosis caused by ARDS. In order to explore the core regulators of ARDS affected by inositol, mRNA-seq sequencing was performed. Those results showed that transcription factor HIF-1α can regulate the expression of SLUG, which in turn can regulate the key gene E-Cadherin involved in cell epithelial-mesenchymal transition (EMT) as well as N-cadherin expression, and both were regulated by inositol. Our results suggest that inositol activates autophagy to inhibit EMT progression induced by the HIF-1α/SLUG signaling pathway in ARDS, and thereby alleviates pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Respiratory Distress Syndrome , Mice , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Inositol/adverse effects , Signal Transduction , Respiratory Distress Syndrome/drug therapy , Cadherins/metabolism , Autophagy , Epithelial-Mesenchymal Transition , Lipopolysaccharides/pharmacology
3.
Toxicology ; 479: 153318, 2022 09.
Article in English | MEDLINE | ID: covidwho-2008153

ABSTRACT

Cigarette smoke (CS) significantly contributes to the development of chronic obstructive pulmonary disease (COPD). Heated tobacco products (HTPs), newly developed cigarette products, have been proposed as an alternative for safe cigarette smoking. Although it is plausible to think that replacing traditional cigarettes with HTPs would lower the risks of COPD, this notion requires confirmation by further investigations from sources independent of the tobacco industry. COPD is characterized by an ongoing inflammatory process in the lungs, and the renin-angiotensin system (RAS) has been implicated in the pathogenesis of COPD. Angiotensin-converting enzyme-2 (ACE2) functions as a negative regulator of RAS and has been suggested as a cellular receptor for the causative agent of SARS-CoV-2. It has been shown that smoking is most likely associated with the negative progression and adverse outcomes of SARS-CoV-2. In this study, we found that cigarette smoke extracts from traditional cigarettes (CSE) caused higher cytotoxicity and higher oxidative stress levels than extracts from HTPs (HTPE) in two lung cell lines (Calu-3 and Beas-2B). CSE and HTPE induced RAS activation, MAPK activation, and NF-kB inflammatory pathway activation, resulting in the production of inflammatory cytokines. Furthermore, CSE and a high dose of HTPE reduced tight junction proteins, including claudin 1, E-cadherin, and ZO-1, and disrupted lung epidermal tight junctions at the air-liquid interface (ALI). Finally, CSE and HTPE enhanced the spike protein S1-induced lung injury response. Together, these results suggest that HTPE induced similar lung pathogenesis relevant to COPD and SARS-CoV-2-induced lung injury caused by CSE.


Subject(s)
COVID-19 , Lung Diseases , Lung Injury , Pulmonary Disease, Chronic Obstructive , Tobacco Products , Angiotensin-Converting Enzyme 2 , Angiotensins , Cadherins , Claudin-1 , Cytokines , Lung Diseases/pathology , Lung Injury/chemically induced , NF-kappa B , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tight Junction Proteins , Tobacco , Tobacco Products/toxicity
4.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1934120

ABSTRACT

The major object of this Editorial is to briefly put into context the processes, occurring during tumor onset and progression, and the biological mechanisms mediated by cadherins described in the review and research articles included in the Special Issue entitled "Activations of Cadherin Signaling in Cancer" [...].


Subject(s)
Cadherins , Neoplasms , Humans , Neoplasms/pathology , Signal Transduction
5.
Front Cell Infect Microbiol ; 12: 798767, 2022.
Article in English | MEDLINE | ID: covidwho-1862592

ABSTRACT

COVID-19 is the biggest pandemic the world has seen this century. Alongside the respiratory damage observed in patients with severe forms of the disease, gastrointestinal symptoms have been frequently reported. These symptoms (e.g., diarrhoea), sometimes precede the development of respiratory tract illnesses, as if the digestive tract was a major target during early SARS-CoV-2 dissemination. We hypothesize that in patients carrying intestinal SARS-CoV-2, the virus may trigger epithelial barrier damage through the disruption of E-cadherin (E-cad) adherens junctions, thereby contributing to the overall gastrointestinal symptoms of COVID-19. Here, we use an intestinal Caco-2 cell line of human origin which expresses the viral receptor/co-receptor as well as the membrane anchored cell surface adhesion protein E-cad to investigate the expression of E-cad after exposure to SARS-CoV-2. We found that the expression of CDH1/E-cad mRNA was significantly lower in cells infected with SARS-CoV-2 at 24 hours post-infection, compared to virus-free Caco-2 cells. The viral receptor ACE2 mRNA expression was specifically down-regulated in SARS-CoV-2-infected Caco-2 cells, while it remained stable in HCoV-OC43-infected Caco-2 cells, a virus which uses HLA class I instead of ACE2 to enter cells. It is worth noting that SARS-CoV-2 induces lower transcription of TMPRSS2 (involved in viral entry) and higher expression of B0AT1 mRNA (that encodes a protein known to co-express with ACE2 on intestinal cells). At 48 hours post-exposure to the virus, we also detected a small but significant increase of soluble E-cad protein (sE-cad) in the culture supernatant of SARS-CoV-2-infected Caco-2 cells. The increase of sE-cad release was also found in the intestinal HT29 cell line when infected by SARS-CoV-2. Beside the dysregulation of E-cad, SARS-CoV-2 infection of Caco-2 cells also leads to the dysregulation of other cell adhesion proteins (occludin, JAMA-A, zonulin, connexin-43 and PECAM-1). Taken together, these results shed light on the fact that infection of Caco-2 cells with SARS-CoV-2 affects tight-, adherens-, and gap-junctions. Moreover, intestinal tissues damage was associated to the intranasal SARS-CoV-2 infection in human ACE2 transgenic mice.


Subject(s)
COVID-19 , Cadherins , Gastrointestinal Diseases , Angiotensin-Converting Enzyme 2/genetics , Animals , Antigens, CD/genetics , Caco-2 Cells , Cadherins/genetics , Gene Expression , Humans , Mice , RNA, Messenger , Receptors, Virus/genetics , SARS-CoV-2/genetics
6.
Viruses ; 14(5)2022 04 25.
Article in English | MEDLINE | ID: covidwho-1810326

ABSTRACT

The vascular barrier is heavily injured following SARS-CoV-2 infection and contributes enormously to life-threatening complications in COVID-19. This endothelial dysfunction is associated with the phlogistic phenomenon of cytokine storms, thrombotic complications, abnormal coagulation, hypoxemia, and multiple organ failure. The mechanisms surrounding COVID-19 associated endotheliitis have been widely attributed to ACE2-mediated pathways. However, integrins are emerging as possible receptor candidates for SARS-CoV-2, and their complex intracellular signaling events are essential for maintaining endothelial homeostasis. Here, we showed that the spike protein of SARS-CoV-2 depends on its RGD motif to drive barrier dysregulation by hijacking integrin αVß3, expressed on human endothelial cells. This triggers the redistribution and internalization of major junction protein VE-Cadherin which leads to the barrier disruption phenotype. Both extracellular and intracellular inhibitors of integrin αVß3 prevented these effects, similarly to the RGD-cyclic peptide compound Cilengitide, which suggests that the spike protein-through its RGD motif-binds to αVß3 and elicits vascular leakage events. These findings support integrins as an additional receptor for SARS-CoV-2, particularly as integrin engagement can elucidate many of the adverse endothelial dysfunction events that stem from COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Cadherins , Endothelial Cells/metabolism , Humans , Integrin alphaVbeta3 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
7.
Mol Med Rep ; 25(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1753714

ABSTRACT

Aberrant TGF­ß/Smad7 signaling has been reported to be an important mechanism underlying the pathogenesis of ulcerative colitis. Therefore, the present study aimed to investigate the effects of a number of potential anti­colitis agents on intestinal epithelial permeability and the TGF­ß/Smad7 signaling pathway in an experimental model of colitis. A mouse model of colitis was first established before anti­TNF­α and 5­aminosalicyclic acid (5­ASA) were administered intraperitoneally and orally, respectively. Myeloperoxidase (MPO) activity, histological index (HI) of the colon and the disease activity index (DAI) scores were then detected in each mouse. Transmission electron microscopy (TEM), immunohistochemical and functional tests, including Evans blue (EB) and FITC­dextran (FD­4) staining, were used to evaluate intestinal mucosal permeability. The expression of epithelial phenotype markers E­cadherin, occludin, zona occludens (ZO­1), TGF­ß and Smad7 were measured. In addition, epithelial myosin light chain kinase (MLCK) expression and activity were measured. Anti­TNF­α and 5­ASA treatments was both found to effectively reduce the DAI score and HI, whilst decreasing colonic MPO activity, plasma levels of FD­4 and EB permeation of the intestine. Furthermore, anti­TNF­α and 5­ASA treatments decreased MLCK expression and activity, reduced the expression of Smad7 in the small intestine epithelium, but increased the expression of TGF­ß. In mice with colitis, TEM revealed partial epithelial injury in the ileum, where the number of intercellular tight junctions and the expression levels of E­cadherin, ZO­1 and occludin were decreased, all of which were alleviated by anti­TNF­α and 5­ASA treatment. In conclusion, anti­TNF­α and 5­ASA both exerted protective effects on intestinal epithelial permeability in an experimental mouse model of colitis. The underlying mechanism may be mediated at least in part by the increase in TGF­ß expression and/or the reduction in Smad7 expression, which can inhibit epithelial MLCK activity and in turn reduce mucosal permeability during the pathogenesis of ulcerative colitis.


Subject(s)
Colitis, Ulcerative/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Animals , Cadherins/metabolism , Colitis, Ulcerative/chemically induced , Colon/pathology , Dextran Sulfate/toxicity , Disease Models, Animal , Female , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/ultrastructure , Male , Mesalamine/administration & dosage , Mice, Inbred C57BL , Myosin-Light-Chain Kinase/metabolism , Occludin/metabolism , Peroxidase/drug effects , Severity of Illness Index , Signal Transduction/drug effects , Tight Junctions/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Zonula Occludens-1 Protein/metabolism
8.
Cells ; 11(4)2022 02 11.
Article in English | MEDLINE | ID: covidwho-1688673

ABSTRACT

Transmembrane proteins of adherens and tight junctions are known targets for viruses and bacterial toxins. The coronavirus receptor ACE2 has been localized at the apical surface of epithelial cells, but it is not clear whether ACE2 is localized at apical Cell-Cell junctions and whether it associates with junctional proteins. Here we explored the expression and localization of ACE2 and its association with transmembrane and tight junction proteins in epithelial tissues and cultured cells by data mining, immunoblotting, immunofluorescence microscopy, and co-immunoprecipitation experiments. ACE2 mRNA is abundant in epithelial tissues, where its expression correlates with the expression of the tight junction proteins cingulin and occludin. In cultured epithelial cells ACE2 mRNA is upregulated upon differentiation and ACE2 protein is widely expressed and co-immunoprecipitates with the transmembrane proteins ADAM17 and CD9. We show by immunofluorescence microscopy that ACE2 colocalizes with ADAM17 and CD9 and the tight junction protein cingulin at apical junctions of intestinal (Caco-2), mammary (Eph4) and kidney (mCCD) epithelial cells. These observations identify ACE2, ADAM17 and CD9 as new epithelial junctional transmembrane proteins and suggest that the cytokine-enhanced endocytic internalization of junction-associated protein complexes comprising ACE2 may promote coronavirus entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Intercellular Junctions/metabolism , Intercellular Junctions/virology , ADAM17 Protein/metabolism , Adherens Junctions/metabolism , Angiotensin-Converting Enzyme 2/genetics , Cadherins/metabolism , Carrier Proteins/metabolism , Cell Line , Cell Membrane Permeability , Coronavirus/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Gene Expression/genetics , Tetraspanin 29/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Transcriptome/genetics
9.
Biol Pharm Bull ; 44(10): 1371-1379, 2021.
Article in English | MEDLINE | ID: covidwho-1445700

ABSTRACT

The vascular permeability of the endothelium is finely controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions. In the majority of normal adult tissues, endothelial cells in blood vessels maintain vascular permeability at a relatively low level, while in response to inflammation, they limit vascular barrier function to induce plasma leakage and extravasation of immune cells as a defense mechanism. Thus, the dynamic but also simultaneously tight regulation of vascular permeability by endothelial cells is responsible for maintaining homeostasis and, as such, impairments of its underlying mechanisms result in hyperpermeability, leading to the development and progression of various diseases including coronavirus disease 2019 (COVID-19), a newly emerging infectious disease. Recently, increasing numbers of studies have been unveiling the important role of Rap1, a small guanosine 5'-triphosphatase (GTPase) belonging to the Ras superfamily, in the regulation of vascular permeability. Rap1 enhances VE-cadherin-mediated endothelial cell-cell junctions to potentiate vascular barrier functions via dynamic reorganization of the actin cytoskeleton. Importantly, Rap1 signaling activation reportedly improves vascular barrier function in animal models of various diseases associated with vascular hyperpermeability, suggesting that Rap1 might be an ideal target for drugs intended to prevent vascular barrier dysfunction. Here, we describe recent progress in understanding the mechanisms by which Rap1 potentiates VE-cadherin-mediated endothelial cell-cell adhesions and vascular barrier function. We also discuss how alterations in Rap1 signaling are related to vascular barrier dysfunction in diseases such as acute pulmonary injury and malignancies. In addition, we examine the possibility of Rap1 signaling as a target of drugs for treating diseases associated with vascular hyperpermeability.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Intercellular Junctions/metabolism , rap1 GTP-Binding Proteins/metabolism , Animals , Humans
11.
Cells ; 10(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1323125

ABSTRACT

The open carrier system (OC) is used for vitrification due to its high efficiency in preserving female fertility, but concerns remain that it bears possible risks of cross-contamination. Closed carrier systems (CC) could be an alternative to the OC to increase safety. However, the viability and developmental competence of vitrified/warmed (VW) oocytes using the CC were significantly lower than with OC. We aimed to improve the efficiency of the CC. Metaphase II oocytes were collected from mice after superovulation and subjected to in vitro fertilization after vitrification/warming. Increasing the cooling/warming rate and exposure time to cryoprotectants as key parameters for the CC effectively improved the survival rate and developmental competence of VW oocytes. When all the conditions that improved the outcomes were applied to the conventional CC, hereafter named the modified vitrification/warming procedure using CC (mVW-CC), the viability and developmental competence of VW oocytes were significantly improved as compared to those of VW oocytes in the CC. Furthermore, mVW-CC increased the spindle normality of VW oocytes, as well as the cell number of blastocysts developed from VW oocytes. Collectively, our mVW-CC optimized for mouse oocytes can be utilized for humans without concerns regarding possible cross-contamination during vitrification in the future.


Subject(s)
Blastocyst/cytology , Cryopreservation/methods , Fertilization in Vitro/methods , Oocytes/cytology , Vitrification , Animals , Biomarkers/metabolism , Blastocyst/metabolism , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Survival/drug effects , Cells, Cultured , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Female , Gene Expression , Male , Metaphase , Mice , Oocytes/drug effects , Oocytes/metabolism , Spermatozoa/physiology , Sucrose/pharmacology
12.
PLoS One ; 16(6): e0253347, 2021.
Article in English | MEDLINE | ID: covidwho-1280628

ABSTRACT

The unprecedented global COVID-19 pandemic has prompted a desperate international effort to accelerate the development of anti-viral candidates. For unknown reasons, COVID-19 infections are associated with adverse cardiovascular complications, implicating that vascular endothelial cells are essential in viral propagation. The etiological pathogen, SARS-CoV-2, has a higher reproductive number and infection rate than its predecessors, indicating it possesses novel characteristics that infers enhanced transmissibility. A unique K403R spike protein substitution encodes an Arg-Gly-Asp (RGD) motif, introducing a potential role for RGD-binding host integrins. Integrin αVß3 is widely expressed across the host, particularly in the endothelium, which acts as the final barrier before microbial entry into the bloodstream. This mutagenesis creates an additional binding site, which may be sufficient to increase SARS-CoV-2 pathogenicity. Here, we investigate how SARS-CoV-2 passes from the epithelium to endothelium, the effects of αVß3 antagonist, Cilengitide, on viral adhesion, vasculature permeability and leakage, and also report on a simulated interaction between the viral and host protein in-silico.


Subject(s)
Endothelium, Vascular/virology , Integrin alphaVbeta3/metabolism , SARS-CoV-2/pathogenicity , Snake Venoms/pharmacology , Antigens, CD/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/physiopathology , Caco-2 Cells , Cadherins/metabolism , Computer Simulation , Endothelium, Vascular/cytology , Endothelium, Vascular/physiopathology , Host-Pathogen Interactions/drug effects , Humans , Integrin alphaVbeta3/chemistry , Models, Molecular , Mutation , Permeability , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
13.
Curr Drug Deliv ; 18(10): 1595-1610, 2021.
Article in English | MEDLINE | ID: covidwho-1110175

ABSTRACT

OBJECTIVE: The outbreak of COVID-19 caused by SARS-CoV-2 has promptly spread worldwide. This study aimed to predict mature miRNA sequences in the SARS-CoV-2 genome, their effects on protein-protein interactions in the affected cells, and gene-drug relationships to detect possible drug candidates. METHODS: Viral hairpin structure prediction, classification of hairpins, mutational examination of precursor miRNA candidate sequences, Minimum Free Energy (MFE) and regional entropy analysis, mature miRNA sequences, target gene prediction, gene ontology enrichment, and Protein-Protein Interaction (PPI) analysis, and gene-drug interactions were performed. RESULTS: A total of 62 candidate hairpins were detected by VMir analysis. Three hairpin structures were classified as true precursor miRNAs by miRBoost. Five different mutations were detected in precursor miRNA sequences in 100 SARS-CoV-2 viral genomes. Mutations slightly elevated MFE values and entropy in precursor miRNAs. Gene ontology terms associated with fibrotic pathways and immune system were found to be enriched in PANTHER, KEGG and Wiki pathway analysis. PPI analysis showed a network between 60 genes. CytoHubba analysis showed SMAD1 as a hub gene in the network. The targets of the predicted miRNAs, FAM214A, PPM1E, NUFIP2 and FAT4, were downregulated in SARS-CoV-2 infected A549 cells. CONCLUSION: miRNAs in the SARS-CoV-2 virus genome may contribute to the emergence of the Covid-19 infection by activating pathways associated with fibrosis in the cells infected by the virus and modulating the innate immune system. The hub protein between these pathways may be the SMAD1, which has an effective role in TGF signal transduction.


Subject(s)
Antiviral Agents/pharmacology , Epigenesis, Genetic , MicroRNAs , SARS-CoV-2/drug effects , A549 Cells , Cadherins , Humans , MicroRNAs/genetics , Nuclear Proteins , Protein Phosphatase 2C , RNA-Binding Proteins , Tumor Suppressor Proteins , COVID-19 Drug Treatment
14.
Cells ; 10(2)2021 02 10.
Article in English | MEDLINE | ID: covidwho-1094233

ABSTRACT

Clinical manifestations of coronavirus disease 2019 (COVID-19) in pregnant women are diverse, and little is known of the impact of the disease on placental physiology. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been detected in the human placenta, and its binding receptor ACE2 is present in a variety of placental cells, including endothelium. Here, we analyze the impact of COVID-19 in placental endothelium, studying by immunofluorescence the expression of von Willebrand factor (vWf), claudin-5, and vascular endothelial (VE) cadherin in the decidua and chorionic villi of placentas from women with mild and severe COVID-19 in comparison to healthy controls. Our results indicate that: (1) vWf expression increases in the endothelium of decidua and chorionic villi of placentas derived from women with COVID-19, being higher in severe cases; (2) Claudin-5 and VE-cadherin expression decrease in the decidua and chorionic villus of placentas from women with severe COVID-19 but not in those with mild disease. Placental histological analysis reveals thrombosis, infarcts, and vascular wall remodeling, confirming the deleterious effect of COVID-19 on placental vessels. Together, these results suggest that placentas from women with COVID-19 have a condition of leaky endothelium and thrombosis, which is sensitive to disease severity.


Subject(s)
COVID-19/complications , Placenta/blood supply , Placenta/pathology , Pregnancy Complications, Cardiovascular/etiology , Pregnancy Complications, Infectious/etiology , Thrombosis/etiology , Adult , Antigens, CD/analysis , COVID-19/pathology , COVID-19/virology , Cadherins/analysis , Claudin-5/analysis , Endothelium/blood supply , Endothelium/pathology , Endothelium/virology , Female , Humans , Infant, Newborn , Microvessels/pathology , Microvessels/virology , Pregnancy , Pregnancy Complications, Cardiovascular/pathology , Pregnancy Complications, Cardiovascular/virology , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/isolation & purification , Thrombosis/pathology , Thrombosis/virology , Young Adult , von Willebrand Factor/analysis
16.
Virology ; 552: 43-51, 2021 01 02.
Article in English | MEDLINE | ID: covidwho-843443

ABSTRACT

This study focused on intestinal restitution including phenotype switching of absorptive enterocytes and the abundance of different enterocyte subtypes in weaned pigs after porcine epidemic diarrhea virus (PEDV) infection. At 10 days post-PEDV-inoculation, the ratio of villus height to crypt depth in both jejunum and ileum had restored, and the PEDV antigen was not detectable. However, enterocytes at the villus tips revealed epithelial-mesenchymal transition (EMT) in the jejunum in which E-cadherin expression decreased while expression of N-cadherin, vimentin, and Snail increased. Additionally, there was reduced expression of actin in microvilli and Zonula occludens-1 (ZO-1) in tight junctions. Moreover, the protein concentration of transforming growth factor ß1 (TGFß1), which mediates EMT and cytoskeleton alteration, was increased. We also found a decreased number of Peyer's patch M cells in the ileum. These results reveal incomplete restitution of enterocytes in the jejunum and potentially impaired immune surveillance in the ileum after PEDV infection.


Subject(s)
Coronavirus Infections/veterinary , Enterocytes/pathology , Epithelial-Mesenchymal Transition , Gastroenteritis, Transmissible, of Swine/pathology , Peyer's Patches/pathology , Porcine epidemic diarrhea virus/pathogenicity , Animals , Cadherins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gastroenteritis, Transmissible, of Swine/immunology , Gastroenteritis, Transmissible, of Swine/virology , Ileum/immunology , Ileum/pathology , Intestinal Mucosa/pathology , Jejunum/immunology , Jejunum/pathology , Microvilli/pathology , Swine , Tight Junctions/pathology , Transforming Growth Factor beta1/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL